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Computation of the 

Residual Radiation Tranuuission Factor for 

the Marine Corps LVTP7 

by 

Robert G. Cawley 

We develope an analytical technique for computing the gamma 
radiation reduction factor for a slab of arbitrary orientation in a 
field of uniformly distributed radioactive fallout (Co60). We 
apply this to a model of the army M113 APC, assuming the entire 
reduction is due to material in the vehicle walls, ceiling and floor. 
The r^cv.lting protection, P = 1.5, differs sharply with the measured 
value, P = 4.0, which we assume is due to the presence of other 
material than that in the vehicle surfaces. As a second model of 
the M113 we assume its shape to be that of a parallelepiped having 
a square vertical cross section of side L, uniform wall thickness 
t^ff  and height equal to the actual vehicle height. We choose L 

and t ,„ so that the surface area and total mass Tf the model vehicle ef r 
agree with those of the actual vehicle. A 10X albedo correction to 
the protection then results in agreement with experiment: 
M113 
R .    =3.9.  We apply the same approach to the LVTP7, getting 

LVTP7 -1 
D..    = 4.1.  The radiation reduction factors, R = P,  for these ^theory 
two cases are 0.26 and 0.24 respectively; and the residual radiation 
transmission factors, defined from R to incluJ., the effects of a 
ground roughness parameter of 3 ft, are both 0.3. 

The analytical method also should be useful to save computation 
time ani cost in numerical work. 
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Computation of the Residual Radiation Transmission Factor for the 
Marine Corps LVTP7. 

This report gives a new method for calculating the Y-radiaticn 
transmission through a plane slab of arbitrary orientation, above a 
field of uniformly distributed radioactive fallout. The method is 
applied to the Marine Corps LVTP7 to estimate the residual radiation 
transmission factor.  The work was sponsored by the U. S. Marine 
Corps Development and Education Command. 

The author wishes to thank M. A. Schmoke for a discussion, and for 
securing certain data pertaining to the eirmy M113 APC, and C. M. 
Huddleston for discussions and for assistance in obtaining reference 
material, and for reading the report. 
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I.  INTRODUCTION 

The present work reports tlie results of an effort to compute the 
protection factor and the residual radiation transmission factor 
(RRTFrdefined in Section 2) for the Marine Corps LVTP7 troop carrier 
in a field of radioactive fallout.  The P7 is similar to another 
vehicle, the army M113 APC (armored personnel carrier), for which 
experimental data are available,1 and we have used those results in 
our method.  Briefly, we have developed an approximate analytical 
technique, which enables us to calculate the protection factor for 
an enclosure whose walls are composed of plane slabs having arbitrary 
orientations. 

Applied to a fairly faithful model of the M113 geometry and using 
for wall thicknesses the actual values, the calculated value of the 
protection factor is P = 1.53, much lower than the experimental 
value of 4.0.  The reason for this discrepancy is that the mass of 
the M113 in the model is less than half the mass of the actual 
vehicle in the (combat loaded) experimental conditions, so there is 
quite a bit more "extra" material actually present to enhance the 
protection over that afforded by the model; this material includes 
the engine, treads, wheels, axles, fuel, troops, interior panelling 
surfaces, and sundry paraphernalia, the mass distribution of which 
it is impractical to try to take into account.  In the first place 
the labor involved would be enormous, and the results withal 
probably not trustworthy.  Even more significantly, there is a 
"theoretical error" inherent in the notion of vehicle protection 
factor, a circumstance which makes too precise a result meaningless: 
the actual protection factor varies from place to place inside the 
vehicle owing to the irregular mass distribution (including shape), 
and to dependence of the radicition source intensity on height above 
the ground.  Variations arising from these, and other effects as 
well, are at least 10 - 15%, experimentally,1 so the complexity of 
the actual circumstances has the effect of easing the calculational 
problem. 

To deal with the problem of the extra mass we have idealized the 
actual vehicle by a rectangular parallelepiped with square shape and 
having height equal to that of the actual vehicle.  The wall thick- 
ness and the size of the square were fixed by requiring equriity 
between the masses and surface  areas of the actual vehicle and the 
model vehicle.  The equation of the protection factor has an 
especially simple approximate form for this geometry, and the 
results we have obtained are in good agreement with experiment. 
Eqs. (6.19 and (6.17) give the values repcrted in Reference 1, 
respectively, for the "survey correlation factor," which, for the 
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experimental conditions of ground roughness, was .86 times the 
protection factor, and the calculated results from our model, which 
assumes a 10% albedo contribution to the reduction factor. 

The results for the P7, modeled in this way, as a square rectan- 
gular parallelpiped, are given in Section 6 (eqs. (6.20)and (6.22)). 

The outline of the report is this. In Section 2 we establish 
the character of the physical approach we have adopced, present 
source and buildup data, motivate our choice for ground roughness 
parameter, and give the general expressions of the protection factor, 
the survey correlation factor and the RRTF. In Section 3 we ex- 
plicate the geometrical problem of the reduction factor (unscattered 
component) for a plane slab of arbitrary orientation, introducing 
a certain shape approximation which exploits essential features of 
the source. In Section 4 we develope the principal analytical 
formulas for the slab reduction factor and solid angle factor. 
In Section 5 we present the results of the M113 model calculation 
which neglects the "extra matter" actually present but not contained 
in the walls. In Section 6 we present details of the parallelepiped 
model and give results for both the M113 and the P7. In Section 7 
we discuss the results, and in Section & we give a brief summary of 
what we have done and offer a concluding remark concerning 
application of our method to computer programing. 
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2.  PRELIMINARY CONSIDERATIONS 

i\.  Physical Approach 

We assume the exposure at a point inside the vehicle to be 
a sum of contributions from all directions, with chat from any given 
direction expressed as the product of a buildup factor with the 
exponentially attenuated unscattered component deriving from an 
assumed angular dependent source.  For the source distribution we 
assume a form derived from curves given by Spencer,2 for air, 
above an infinite plane of uniformly distributed fallout, simulating 
effects of ground roughness by using an effective height above the 
ground which is augmented by an amount Ah over the actual height.2 

The normalization of the angular distribution,-I (h,x) , where 
x - cos 9, 6 the angle of the line of sight from the detector 
position, of the incident y  ray with the downward vertical, is set by 
the usual condition, 

L(h) ■( d x £(h,x) =1, for h = 3 feet (2.1) 

To neglect of albedo, the reduction factor fo.c detector height 
h ('hgff = h + Ah if there is ground roughness) due to a slab of 
thickness t and surface E. 

i l 
is 

r. = r_ (h) = B0(t.)E„ (h,t.) (2.2) 1   Li        x Li   i 

where B0(t±)   is the buildup factor for the given slab material, 
whose thickness is tj, and E  (t|) is3 

E£i(h,ti) = -^-JdOgE. (nH(h,cos e)exp(-!is,tSi sec890) ,        (2.3) 

where |i„ is the inverse attenuation length for the substance of 
which £ is composed, 90  is the angle formed by the incident y-ray 
and the normal to E, 8 is the so-called refraction parameter, which 
depends on the slab material,3  and the "step" function gj(Q) is 
unity if the line of sight of the direction indicated by   0 
intersects E, and is zero otherwise.  In the tame spirit the re- 
duction factor inside the enclosure, at height h — above the ground 
is understood—is 

R(h) = aR = a?rz. (heff)„ (2.4) 

where the summation extends over all the surfaces of the enclosure. 
In eq. (2.4) we have included an overall factor a to account for 
albedo, i.e. the contribution to the exposure from y   rays back- 
scattered from the interior faces of the enclosure.  The protection 
factor within the enclosure at height h is defined by 
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P(h) = L(3 feet)«"1 = a"1, (2.5) 
by eq. (2.1); it is the ratio of the exposure in the 
standard unprotected position (3 feet above a smooth infinite plane 
of uniformly distributed fallout) to the exposure at height h 
within the enclosure under (assumed) given ground roughness con- 
ditions. The survey correlation factor, S, reported in Reference 
1, is a similar ratio, with the measured exposure at h ■ 3 feet 
replacing that   for the standard unprotected position; so 

S(h) = L (3 feet + Ah)ft"1 ^ L(3 feet + Ah)P. (2.6a) 

Since L(h) , defined in eq. (2.1), is a decreasing function of h, 
S(h) is smaller tl an P (h) . We define the RRTF to be S  • 

B.  The Source 

2 
<e(h,x) * c, + Co (x + 1) , (2.9) 

requiring the constants c and c to be chosen so that 

Uh,-1)/-Uh,0) = .195 (2.10) 

; 
1 

RRTF = S"1. (2.6b) 

If the source we;-a that due solely to unscattered y-rays of 
energy E, we would have 

I (h,x) = c x exp(-u.hx ),  x>0, ,_ 7> 

t(h,x) = 0 x<0, 

where [x        is the y-ray attenuation length in air for energy E, and 
c is a normalization coefficient.  In Figures 1 and 2 we have re- 
produced two of the curves from Reference 2, plots of -t(h,x) for 
h = 6.6 feet and h = 66 feet, together with plots of eq. (2.7) for 
values of |i such that the location of the peaks of the former co- 
incide with those of the latter, which occur at 

x - |i h a K., (2.8) 

and with normalization of (2.7) chosen so that the heights of the 
peaks coincide.  For h - 6.6 feet the agreement for x> 0 is 
extremely good and for h = 66 feet the disagreement is of order 10%, 
or so.  Our interest is in height values appropriate to the 6.6 feet 
case. 

To very good accuracy, to quite a bit better than 5% for heights 
of interest to us, we are justified in using the form (2.7) for 
x>o.  For the skyshine part, x<0 , we assume a parabola centered 
at x = -1, 
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which is good to <5% between h - 3.3 feet and h = 33 feet. We fix 
the relative normalization between the x < 0 and x>0 part& by 
requiring 

S = .HOL, (2.11) 
where 0 

S =|  d x l(h,x) , (2.12) J-l 
is the skyshine contribution to L.  Between 3 feet and 33 feet S 
rises from .093L to .125L, from curves in Reference 2; interpolation 
gives S = .105L for h = 6.6 feet, while direct measurements from 
Figure 1 have given us eq. (2.11). 

The normalization coefficient c, in eq. (2.7), still remains to 
be fixed; it is a buildup factor, and it depends on h. Also,we need 
to choose a value for ua.  First the latter: the contribution to 
L from x > o, assuming the form in eq. (2.7), is cE (H) where E^(K) 
is the exponential integral, 

E,(H)=y dyy'^expf-y); (2.13) 

we equate this at h = 6.6 feet to 

L(6.6 feet) - S(6.6 feet) = .890L(6.6 feet), 

taking L(6.b feet)   .87 from Spencer2, to get 

c(6.6 feet)E1(K(6.6 feet)) = .774. (2.14) 

But, with x = x. locating the peak, we have also 

c • (en)"1 = lp (2.15) 

where -tp is the peak value of I,  which is 4.15 for h = 6.6 feet; 
combining these gi ves 

*E.(H)L c c    t   = .774 • (4.15e)-1 - .0686,  (2.16) 
1   6.6 feet 

vhose solution is K = .0207 (to about 3%), so that* 

li~ = 6.6 ft. f .0207 = 319 feet, or 97m, 
Cl 

\i    = .003134 ft?1 (2.17) 
cl 

* The value 97m seems a little low for the spectrum from 
which Spencer's curves are calculated; this was a 1.12 
nr. fission spectrum, for which, using spectrum data 
given in Reference 2, we have estimated p  ±  123m, to 
perhaps 15%. a 
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If we use eq. (2.15), taking K = \x  h and reading I      from 
Spencer's curves, we obtain a set of vilues of c whichpcan be fit 
with a straight line 

c = .2169 + .835 H ,  4 ft * h s 42 ft., (2.18) 

while for h = 3 ft. we get 

c(3 ft.) - .2172 12.19) 

From eqs. (2.10), (2.11) and (2.18) we obtain c, and c,, and with 
this the complete form for £(h,x), 

' x exp (-^hx ) , x > 0, (x exp (-liahx ) , x 

•264E1(a h)[.195 + a..,L._ . .805 (x+1)2], x<0.      (2.20) 

This can be used for 4 ft. ^hs42 ft. even though (2.10) and 
(2.11) weaken above 30 ft., for the whole skyshine contribution is 
not much more than 15 to 20% of the total below h = 42 ft. When we 
integrate (2.20) using (2.19), we find L(3 ft.) = 1.000. 

The source function, eq (2.20), is not quite what we want, 
however. We need to shift the value of \x~  if we wish to compare 
with experiments of Reference 1, where Co °0 was used as the Y~rav 
source.  The Co60 spectrum contains two principle peaks, at 1.17 MeV 
and 1.33 Me^.  If we idealize this as a single peak at 1.25 MeV, the 
attenuation length in air is 

^a   s      f(E)ath 

where A/B = 2 is the atomic weight to number ratio for air, 
-3     3 

p = 1.312 x 10 ' gm/cm is the density of air (STP),   m  the 
mass of the proton, <r  the Thompson cross section,      " 

ü  = -j- r.,  r =e /m c = classical electron radius, 

and f(E) is the Compton cross section for y  energy E, in units of* 
oth. We get 

|i'1(1.25 MeV) = 131.7 m = 431 ft 

u = .002314 ft"1, (2.22) 

which are somewhat different from the values appearing in (2.17). 

8 
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To convert to the Co  spectrum, we simply take over eq. 
(2.20), regarding the right side as a function of x - u h, valid 

-1 a     -1 
between »^ = .003134 ft  x 4 ft = .01254, and K  = .003134 ft  x 

42 ft = .1316, where the K dependence of c is indicated by eq. 
(2.18).  There is an overall normalization change affecting the 
coefficients in eq. (2.18), however, arising from the fact that the 
normalization condition, eq. (2.1), holds for any \i  ,    We have, at 
h = 3 ft., a 

c(3 ft, .002314 ft"1) = N • c(3 ft, .003134 ft-1)       (2.23a) 

while from eqs. (2.1) and (2.20) with u » .002314 ft"1, 
_1 a 

c(3 ft, .002314 ft  ) x 1.1222 E  (.006942) =  1        (2.23b) 

whence 

N = .938 (2.24) 

We assume that the same factor scales the source to the new value 
of u for other values of h and we get 

c = .2034 + .783u h,        5.5 ft. <h<  55 ft., 

= .2038, h = 3 ft. (2.25) 

The limits of validity to (2.25) are determined as * /|i and 
H /\x     (compare eq. (2.18)). 
z a 

Summarizing, the source is given in eqs. (2.20) and (2.25), 
60 

for the case of a Co  source. 

C.  Buildup Factor for Transmission through a Wall. 

Taking the data of Reference 3, we can fit the buildup factor, 
as a function of (normal) wall thickness, to a straight line.  For 
X out to 2 mean free paths (which is alt we need) we have, for 
concrete, or aluminum 

B = 1 + .76X, (2.26) 
o 

when X is the mass thickness in units of u  .  For aluminum, 
3 -1     -1 

using eq. (2.21) with p = 2.72 gm/cm , we have u  = p.    =2.60 
in, so that 

B  = 1 + .292 t (2.27) 
o 

where t is the wall thickness in inches.  This is good to a percent 
or so. 
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D. Ground Roughness 

The data of Reference 1 permit the determination of the 
ground roughness parameter, Ah, which existed under the conditions 
of the experiment.  Figure 3 shows a plot of the reported unprotec- 
ted exposure as a function of height h, normalized to unity at 3 
feet, and Figure 4 shows four theore-ical curves of L(h+&h), for 
Ah = 0,3,6, and 9 feet, with zeros of ordinate chosen so that all 
curves pass through the same point at h = 3 feet. When the two 
figures are superposed, the experimental curve lies on top of the 
theoretical curve having Ah = 3 feet.  For comparison purposes 
therefore we adopt this value for the ground roughness parameter 
throughout. We notice that if h < 5 feet then *<.002314x(5+3) = 
.0185«!, a fact we exploit below, 

10 
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3.  PLANE SLAB HAVING ARBITRARY ORIENTATION 

A. Geometrical Preliminaries 

We choose cartesian coordinates (x ,y ) in the plane of the slab, 

£, with the x - axis* horizontal and the y - axis forming an 
o o 

angle a with the vertical, where a = + •?    for the floor (Figure 5). 

The origin cf coordinates, 0, is the intersection of the perpendi- 
cular to the x y - plane from tre detector position D = D(0,0,z,) 

where z >0 is the distance from slab to detector; the detector is 
positioned at height h above the horizontal plane of the ground. 
In addition we employ spherical coordinates, with origir. at D and 
polar axis pointing down.  The co-latitude angle of the point 
P(x y 0) at which the incident y-xay  passes through Z  is 9, by the 

o, o, 
definition given above eq.(2.1). The unit vector which points from Dto 
P is n and the azimuth of /n> in the plane parallel to the ground 
(through D) measured from + x,counter-clockwise from above, is cp, 
the second polar vtriable of the point** P.  In Figure 5 v/e have 
included also an auxiliary (primed) set of cartesian axes, having 
the same origin 0 and y' - axis pointing vertically upwards. From 

o 

o o 

cos  8  +   {£' cos cp  - £' sin cp)sin 6 
o o 

/\ y    = - z    sin a + y    cos a, 
o o o 

/\t     /\ .  /\ z    = 'z    cos a + y    sin a 
o        o o 

(3.1) 

(3.2a) 

(3.2b) 

(3.2c) 

we have 

ft = x"   cos cp  si:m 8   - Vs (cos cp  cos ft + sin 8   sin a  sin cp) 
o o 

+  z     (cos cp  sin a-sin  8  cos a  sin cp) . (3.3) 

♦Generally, we use the carat to denote a direction (unit) vector 

** 
The spherical coordinate system is left-handed. 

13 
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FIG. 5 Geometry of slab (2) orientation, detector (D) position, y-ray path (PD) through Z from 

the ground, r  . For the configuration shown,   a>0. 

14 
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V7« denote the vector OP by £     and  pf> by r    so that 
A » p P 

rP = rPn - Pp  " Vo (3*4) 

and 
p~p= \K+ »A l3-5) 

rp -(«2 - y* ♦ .J>*. (3.6 

whence, using eq. (3.4), we find 

x = x(x y ) = cos 8 = -r  y cos a - r  z.sin a       (3.7) 
o/o; p  o        Pi 

-1       ,     -1 tan cp = -x y sin a + x z, cos a, 
o Jo        o 1 

(3.8) 

ana 

^2JBL  . _ z r"
3 , (3.9) 

Mx0#y0)    lp 

so that integrals of the type appearing in eq. (2.3) can be 
performed on the plane of the slab, 

i r i f*2 fY2       zi —jdOgE(n)'-- --Jpl     dx0dy0 • - 
J Xl J Yl       rp 

2rr /—'»£*"'     2H f   18 "Ao"*o '  ■>      »        (3.10) 
^ ./X.  IV. T. 

P 

where the "left" and "right" edges of Z  are located at x = x1 and 

x = x_, respectively, and the "lower" and "upper' edges by 

y = y, and y = y„, respectively.  It we let 

^Vi1 ■  *i- Vi ■ (3-n) 

th^n for (3.10) we may write 

i r i(%2 r^2     2   2    -3^2 ^-|dngz(n)---= ^   dd    dnrr+n+i)        •••. (3.12) 

where    ff.   = x.z.     and n.   =y.z.   ,   i =  1 2. 
^i ii 'i i i 

We also need to express 9  in terms of the cartesian variables; 
o 

from 
cos 6  *£•<■£), (3.13) 

o        o 
with eq. (3.3), 

cos 0O = - cos 0 sin a + sin 8 cos a sin cp, (3.14) 

15 
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whence with the aid of eqs.   (3.7)   and   (3.8) 

cos e    =   (S2 + r\2 +  l)"1*, (3.15) 

which also can be seen by inspection (Figure 3). 

B. Basic Geometrical Approximation Scheme 

There are two classes of slab orientation we need to consider: 
(i)  |a| well away from :r, as in the case that E is a wall; and 

(ii) a ■ - Tt where E is a ceiling or a floor. For the latter wa 
adopt the approximation scheme described in Reference 2, which 
replaces E by another slab, EQ, formed of suitable combinations of 
circles and annular sectors — so we discuss only case (i) here« 

The integrand of eq. (2.3) is peaked at x » K owing to the form 
of -t(h,x).  The intersection of the plane of E and the cone of 
constant x with vertex at the detector is a conic section, and 
i(h,x) is constant along this curve. We exploit this fact by trans- 
forming integrations over E to elliptical coordinates, u, v, in the 
plane of E, so chosen that the curve x = x, which (normally) is a 
hyperbola, coincides with one of the curves of constant v: v= v.. 
From eq. (3.7) 

x = -(I2  + T)2 + i)"' (T) COS a + sin a), (3.16) 
2     2 

so the hyperbola, which results when cos a > x is 

a"2(n + b)2 - c"2 I2  = 1 (3.17) 

where, for x = x 

2     2-1 
b = sin a cos a (cos a - x ) (3»18) 

= tan a + 0(x2), x< < 1, (3.18') 
2/n  2W  2     2.-2 = x (1-x )(cos a - X ) 

2   ,.    2X ,       2 .    2V-1 
a2 = x2(l-x2) (cos2 a - x2)"2 (3.19a) 

c = (i - * ) (cos a - x )   . (3.19b) 

The angle \^\   formed />y the ^    - axis and the asymptotes to (3.17) 
is given by 

tan |1| = a/c = x (cos2a-x2) ~% (3.20) 

|*| A x + 0(x3), x«l. (3.20') 

Half the distance between the foci, P. and P , is 

16 
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2 ^ c2)* 

2,h , 2„    2 = 2.(1 - x )  cos a(cos a - H*) (3.21) 
2 

& z sec a + 0(K ), H« 1 . (3.21') 

We introduce the elliptical coordinates as follows. We let 
rl and r2 be distances of Vlx-Yo)  from P,(0,-b21-D) and P2(0,-bz +D) 

and define 

u= (2D)"1(r1+r2), v= (2D) "1(r1-r2). (3.22) 

We need the following relations,  which  follow  from the above : 

Ti = Dz~    uv -b (3.23) 

sec 9    =   (?2 + T)2 +  1)1 

-12 t        2 -     \c 
= DZj^    [u    -  2v vu +  v2  -v   (1-v 2)]2, (3.24) 

where 

v    = sin a and v    = -H  sec a, (3.25) 

the  latter being the value of v for which x = H holds;    also 

0 0 0 0 0 ' 
x= - cos a(uv - v v )[u    - 2v uv + v    - v.   (1 - v.   )]     ,      (3.26) 

f^"   (^)V  - v2)[(u2  -1)(1 -  v2)]-^. (3.27) 

For the approximation to small K,  we drop tha v.  terms in eqs. 
(3.24) and (3.26), 

2 2 k 1 
sec 90 = sec8 (u - 2v uv + v ) 2 (3.24 ) 

2 2 -k 1 
x = - uv cos a(u - 2v uv + v ) (3.26 ) 

For eq. (3.10) we have 

j~ fangen)-. = ^f^ JJEdudv(u2 - v2)[(u2 - D d - v2)] -h 

2 2 -3/2 
x (u - 2v uv + v )     ••'. (3.28) 

o 
where the cos a in front comes from the scale factor 
(D/Z;L)

2 • (D/z^  (cf.eqs. (3.24) and (3.27). 

17 
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The integrand of E^,, in eq. (2.3), is proportional to 

-t(h,x) exp (-a^sec 8 0 ) 

where 
aS = ^rt£' (3.29) 

We approximate this by taking 0*1: 

sec 68 = sec 8 - (1-0)8  sec 6  tan 8 + , 
o      o       o     o     o so 

e-aEsec 8 8o = e-aE sec 90(1 + (1 _     ^ Q ^ Q +___} 

o    o     o 
-a^sec 60 , 

= e *■    ° (3.30 ) 

The approximation to (3.30 ) is reasonable if |a| is not too 
large, so that 8 is relatively small in regions where -t(h,x) 
peaks.  For x>0 we have 

t(h,x)e L ° = ex exp[-x  (H - a^uv) ], x>0 ,       (3.31) 

by eqs. (2.20), (3.24'), (3.267), and for x<0, 

t(h,x) = [c1 + c2(x + 1) ] exp (x" a uv), x<0. (3.32) 

The main observation now is that x(u,v) is only weakly u - 
dependent in regions where t(h,x) is big.  To see this we evaluate 
(dx(u,v)/5u)   , 

v     /oX\     . .   /       _ 2.-3/2 
( —~J    = - cos a(u    - 2  sina-uv+ v ) 

v 
3 2 

x   (v    - sin a  •   uv ) , (3.33) 

where the spirit of the approximation is the same as that used to 
get eqs. (3.24') and (3.26'); the exact expresrion for (3x/du) 
vanishes identically at v = v. =-K sec a, where x = K, end for 

2 
v = 0(H), (dx/du)  = 0(K ).  For a = 0, we have 

v 

| ox/a«) v| *[ (^)2 + i]"3/2 

which, even for |v| - .4. satisfies ja.x/du)v|=" 5% since u $ 1 by 
eq. (3.22); and x(l,.4) = .36 ~ 20H , for H = .018, a value larger 
than is needed for our purposes.  So in (3.31) and (3.32) we replace 
x(u,v) with x(l,v), approximating the curves of constant 8, on E, 
by curves of constant v, for values of v veil away from v., where 

this result is exact.  The results are worked out in Section 4. 

18 



NOLTR 73=137 

Finally we ;n4-rr./i«~e a certain geometrical approximation ) , 

to the shape }, which does not enjoy complete generality but which 
does cover a reasonably wide range of circumstances, those of the 
present application, in particular. We simply insert constant, 
suitable chosen limits u , u , ar "" v , v into the integral on the 

right side of (3.28)so that 

ZTI^V^"' * 2VJdnVn) 

"I    J/u j  dv(u2 - v2)[(u2-  1) (1 - v2)]' 
i=l Vx 

2 2   -3/2 x   (u    - 2  sin    a . uv + v )     '     .   •   •,        (3.34) 
where the sum arises from the fact that the coordinates u,v only 
cover half the x y - plane, e.g. the x *0 half, and we have assumed 
that x <0<x .   If 0/ (x.x ), the sum in (3.34) is replaced by a 

' P Ur>       I* ^2 
difference; i.e., a single term, written as i ^dul  dv  suffices, 

JUi  J
Vl 

For all of the circumstances of interest to us here we may 
choose UJL to correspond to the ellipse passing through the point 
(x ,y ) = (x.,0); this gives 
o  o     1 

u. = sec 8. = (x. + D^/D = (1 + §i cos
2a) 2. (3.35) 

The main fact making this choice possible is chat in all cases here 
the upper and lower edges rf V at y = y. and y , lie between the 

foci of the coordinate system, at P =P(0, -bz -D) and 

P« = P~(0 - bz, + D).  in almost all of these the analogous choice 
2   2  '    1 

for v is a good enough approximation*, that v. correspond to the 
hyperbola passing through (x , y ) = (Qi y,).    Then, by the second 

of eqs. (3.22), ard eqs. (3.18') and (3.21'), 

v. = (y. + bz,)D~ = ri. cos a + sin a. (3.36) 
li    1       i 

* The exception is dealt with in Section 5. 
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Figures 6 and 7 show examples for two of the surfaces from the M113, 
illustrating all of the abuve features. The choice of Y  defined 
by eqs. (3.35) and (3.36) we refer to as the centered La° 
approximation. 

; 

I.  I 

20 



NOLTR  73-17 

•g i s 4> 

E   > «  o 
«    «.    0) 
«   S"°   c 

a
te

 
co

ns
 

th
e 

ta
n

g
 

c «-  o  ^ =5 of- 
8 s 5 > 
u  C   O) ii 

D    C 
■n   Ü   £   > 

.if   «    «   ° 
*■ -c "™   o 
.2--  —P 
—  c   D  « a"  o  II   a 
-C   0)   3 ■*• 
*■ S « • 
o —  0- *■ 

O
C

I 

e 
e
l 

e
ll
i 

a
n

d
 

"*■ s  • .°£^ .c a t-  .- 
-«..>* 
4)   C    CM || 

«/>,_>* 
CMC (T^~-' 

Q-   0           «, 

C «*■         T> 
0   O   •_   4) 

4
.?

 
cu

rv
e

s 
id

-p
o

i 
b
o
tt
o
m

 

W  J>  E  « 
sE «> -P 

0) •"" -n *■ 
o    • *■  o 
D u->   «0   -c 
U              °~    4- 3  ,r>       °C 
</>  O       04) 

5    0       0*" 
4)    ?s — 

4)    Ki      _ fi° r 
0 - 11 11 
^  2    0> 
C   0   * 

.2 ° ^ .2 
*:  D   c   0 
0  x "5 -p 

.§ • a- «5 TN 
X     O 4)   9- >s 

a c    .0 

II 
0 

■S?i* 
>s 

4) 
4)           O    ^. 

|<x1w 
CO 

4) 

S    4>   P- Q_ 
.",   -C   >-•*- 0 

Ü 

21 



NOLTR 73-137 

M113(APC) 
Z5 (LOWER FRONT PLATE) 
a=-30" 

FIG. 7 Sane as FIG. 6, but £5 ra ->er than    £4. Here the ellipse u = u] is tangent to the 
extension of the side edges since the midpoint of P]P2 lies above the rectangle 
(yoo>yiandy00>y2). 
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4.  EXPRESSIONS FOR THE E 's, AND R. 

A. Class i. Wall Slabs (|g| Away From n/2). 

It suffices to treat the case x. = - x. so that u = u_; this 

is the symmetrical case.  For the asymmetrical case, u. ^ u_, the 

right side of (3.34) is the average of the two symmetrical results 
for u. and u . 

We evaluate (3.34) first with the "• • •" replaced^by 1; the 
resulting expression gives the solid angle factor for )     at the 

detector position, namely (2nf times the solid angle substended at 

D(0,0,z1) by ^o , 

^ f duf dv(u2 - v2)[(u2 - 1)(1 - v2)] 
"2   V2 

. cos g r j_r *..t.ß       ..2xr/..2   ,wi   „2M~h 

i   2  „  . 2-3/2 ..   ,, x (u - 2 sin a.uv r  v )     . (4.1) 
Using „ 

p"3=u"V1y P' (sin a)(~)n,   |v/u|<l, (4.2) 
U.     n       u 
m=l 

where 
2 ? k 

p = p(sina) = (u - 2 sin a • uv + v ) (4.3) 

and P is the Legendre polynomial of order n, the prime denoting 
differentiation by the argument, we have 

&    cos_a r*u(u2 _.,)-^
VJv(1.v2)^[1.(v/u)2]v-l 

^O        TT    J l J Vt 

CO 

•Y P1 (sin a)(v/u)n. (4.4) 
L>,   n 

(4.5a) 

(4.5b) 

(4.6) 

with  9  given by eq. (3.35), and interchange orders of integration 

23 

n=l 
I'                      We define 

I    =      duu     (u n      \ 

6 
- i)~h = f de cos n"1e 

Jo 

- 
v2 

J    =  f  dvvn_:L(l n      JVl 

2 -H     r 2           -l - v )    2 = JwdY  sin       XY, 

where 

t- v.   =  sin Y., 
l                   l 

i -  1,2, 
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and summation to get 

•z * £2F-i,^<3ina"InJ„-In+2
Jn+?.» <4-7) 

o       n=l 
OB 

* Spj_aT    +     (sin a) I . _J.., (4.8) 
TT  ^        n       n+1 n+1 

n=o 

in which we have used the identity p^+1(x) - PT1_](X) 
= (2k+l)P. (x). 

The key feature of the expansion, eq. (4.8), is that successive 
terms diminish rapidly owing to eq. (4.5b) : the expansion parameters 
are the ¥. because the lowest order term of the Taylor series for 

J (♦,»♦,) is n-1(|_n- *.n ).  From eqs. (4.5), (4.6) and (4.8) we have 
n 1 2        t. l 

.  cos g r_ . a 3 r. .2 U)  =   r@ J, + — sin a sin @  . ^ 
L        TT      2     2 2 
O 

- YJ(3 sin2a - l)(®2+sLn®2 cos 8 ) • i||3 + •••] .     (4.9) 
\ 

The solid angle factor for Z    can be computed exactly for 
comparison; it is the difference of the solid angle factors for the 

rectangles E and Z  , having common upper edge at y =0 and lower 
edges at (respectively) y = y_ and y = y (cf Figure 6), 

© = «)  - w     , (4.10) 

where, from eq. (3.12) 

uu 
Z 

1 r1^  r^i  ,F2   2 ^ ,,-3/2 (4.11) = -  dU dti (5 + n +1) 
x       O    O 

2. -^ 
= J tan^Cn^jd + r,.2+ §2) "*] (4.12) 

For the case shown in Figure 6, z. = 55.2", y = -72.1", 

y = -20.8", and x = 49.1", which yields 

UD  = .1016 

The parameters of Z0  in the centered approximation are obtained 
from eqs. (3.21'), (3.35), and (3.36) with a = 45°; we find D = 78", 
®2  = .5620, I|N =-.2181, and \|i2 

= -4556, so that eq. (4.9) gives 

24 



NOLTR 73-137 

<DV     *  „0852 +   .0203  -  .0050 *  .1005, 

which agrees with the exact result  for uu    to  less than 2%. 

We apply to E_,    the methods used to obtain eqs.   (4.8)   and   (4.9). 
With  the help of eqS.   (3.26'),   (3.31)   and   (3.32)   the analogue of 
eq.   (4.4)   is 

_       .   cos g   ("^   .   2   Tx-^rl2/-!     2\-J5ri   /   / \2n   -1 E      = —TT—      du(u -1)       dv(l-v )    *[l-(v/u)   jv 
l 

[et-vJcx^expf-Hx-1)   +  6(v) (c1+c2(x+l)2] 
CD 

.exp(-A_u) )  p'   (sin a)(v/u)n, (4.13) 
1,      Li-   n n=l 

where 6(v) denotes the unit step function, which vanishes for v<0, and 

AZ '  "aEVX_1 (4'14) 

In the approximation discussed near the end of Section 3, 
x(u,v) pa x(l,v), so that also A (u,v) » A (l„v) „  In parallel with 
eqs. (4„5) we define 

In (v) = jduu"n(u2-l)"^exp(-AE(l,v)u) (4.15a) 

7 = [dvvn"1(l-v2)"\ (v), (4.15b) 

wherei(v) stands for the square bracketed expression in (4.13) with 
x = x(l,v). We write Ift(v) as a Taylor series in v, 

In(v) =y  ~ 1^(0), (4.16) 
L—I      111 .       XI 
m=0 

substitute  this with eqs.   (4015)   into   (4.13)   and rearrange the 
summations  to get the analogue of eq.   (4.8), 

EE    = £2W^Y Jr+1 £  (2n+l)Pn(sin g) Jn+1 ^""(0) (4.17) 
0 r=o        m=o (r-n)I 

Keeping only the  first two  terms,  we obtain an approximation whose 
spirit is only a  little  rougher than that of eq  (4.9), 

EE * ^_a jV0|0)Ji +   (I.|Ho)   +  3  sin a I<0) (ODjJ • 
(4.18) 
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The analogous approximation to u)„     for the example of Figure 6, 
just discussed,   agrees with iu„  to°a  few percent  (1.4%) .    We note that 

In
0)(0)   =In(0) (4.19a) 

o 
= a„  tan a   .  I     .(0), (4.19b) 

L n—i 
so eq. (4.18) may be rewritten as 

EE « £2S-2L[l1(0)J1 + (3 sin a *Z2(0) + a^ tan cx.Io(0)) j2](4.20) 

If a = 0, this has an especially simple form; 

E„ w - I, (0)J,,  a =0. (4.21) 
L0  TT  1     1 

To complete the scheme we develope expressions for J. and J 
for use in eq. (4.20). The In (0) present no difficulty because 
1,(0) is the Sievert integral» changing variables in eq. (4015a), 

r®2 1^0) = Jde exp (-AE(l,0)sec 6) = S(A^(1,0) ,®2) ,       (4022a) 

which is tabulated;  we note from eqs. (3.26 ) and (4.4) that 

AE(1,0) = az sec a. (4.22b) 

U{0)   is found by differentiating (4.22a), 

- aMAi9ii>  = fde sec 8 exp(-A sec 9) 
ÖA        J0 

CU2  2   -\ 
= Jdu(u-l) * exp (-Au), (4.23) 

and this can be determined from the tabulation of S to adequate 
accuracy by numerical differentiation.  Finally by examining the 

expansions of I (0) in powers of ©_ for n = 0 and n = 2 we can 

produce the approximation, 

I2(0) M -I0(0) + 2 ix(0) + j0®£ exp (-a^ sec a).        (4.24) 

The coefficients of the expansions of both sides agree up to and 

including the ©| - term. 
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Turning to J. and J , we treat the direct and skyshine parts 
separately, writing 

J  =j(d) +J
(S) (4.25) 

n   n    J n 

where the integration in j   extends over the range of values of v 

for tfhich x>0, while in J *s; x<o always holds. In the iategrand of 
n n 

the direct contribution we extract a peak factor. 

v<i'= La«"v 

-(v cos a)  exp [+ H(V cos a)  ], 

and expand the rest in powers of v. Integrating term by term produces 
a series of exponential integrals, E.(C.), having small arguments 
when H«1 

CD 

-k_-C 

where 

C. = H sec a • (-v.)"1, (4.26) 

in which v.  means v, or v..      Using l 12 

E2(Ci}   = CiX eXp   (_Ci)   " El(Ci}' 

we  find,   for v.<0<v?, 

j|d'  « c sec a {EJ^CJ)   - [e~^sin a(l~K(tan a + H cot a))v]    },   (4.27a) 

and for v. <v_< 0, 
(d) (v -C TVs 

J1      « c sec a j  E   (£)   - e      sin a   (1-K.(tan a + h cot a))v      *-; 

(4.27b) 
also,   for v.<0<v_, 

J2    n c sec a |-K  sec a E^C)   + [e~Ml - H  tan a)v]v j- (4 28a) 

and,   for v < v_  < 0, 
J.       ^ 

Jj  « c sec a I[-K sec a E (C,) + e~^(l-x tan a)vl V      (4.28b) r 
For the -kyshine part we expand the integral and integrate: for 

vi < ° < v 

27 
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(■)   /_  j- ~ ».. .v8   , (s) Jl    (C1 + C2)V I   ' J2   °' (4.29) 

and for v < v_ < 0, 

j{s) = 0, J^S) = 0. (4.30) 

In eqs. (4.27) through (4.29) we have cropped terms of order 
2 

H and, in comparison with E-(£.), we have neglected terms of order 
2      2 L    x 

v1     and v 

B.  Class ii.  Floor and Ceiling Slabs (a = ± ~) . 

The method we use in these cases is described in Reference 2, 
so we mainly just give the results of using the source indicated 
in eq„ (2.20). 

Floor (a = - TT/2. 

We suppose the detector position to be above the center of 
a rectangular floor S.  E0 is a shape compounded of a centered circle 
of radius r, and two equal, symmetrically placed, annular sectors 
having radii r. and r? > r  ,   concentric and with angle \|t0.  r. is 
determined by the requirement that the solid angle factor 
subtended at D by the circle equal that of a concentric square 
having side equal to the width of E, which is uv'* r2 *-s  determined 
the same way, with the side of the square equal to the length of E, 

the solid angle factor being ID  ,• and I|I0 is fixed by requiring 

ID    = W 

Ceiling (a = + TT/2) . 

Since the skyshine is only about 10% of the total, a coarser 
approximation will do. We let I be a circle whose radius, r , is 

so chosen that ^ = uu „  This may be regarded as a special case of 
the surface used above to represent the floor, one in which r_ = r. , 

If Z  already is a square, a ' = u). „ = a- and r_ = r1 

automatically held, and Z    becomes a circle. 2 o 

28 



NOLTR  73-137 

With 

ri = ZlXi S zl tan V     * = l'2> 
we have 

-1 
sec  0.   =   (1-u). (J))   *, i =   1,2, 

(4.31) 

(4.32) 

(4.33) V A =■   (u£//-u>£,)   """(ID^-UU^,/) . 

Expressions  for  the Wvfi)     mav ^e produced easily from eq. 
(4.12V.     From the  form   (see eqs.   (2.3),   (2.20),   (3.14),   (3.15), 
'3.12)), 

EI  *  2iI
d?Idri(?2+Tl2+1)"1 C  eXp [-A^?+r12+1)J5]    a=-^2' 

(4'34) 

where 

A  H a^+K, 
(4.35) 

:= c JdX> (x +1)-    exp [-A(x2
+l)^] +(cp0/n)cJdXX(x2

+l)-15exp(-A(X2
+l)^] 

Xl (4.36) 

=E1(A)-[l-(cp0/TT)]E1(A  sec   Ql ) - fa /TT) E][ (A  sec   9a ) ; (4.37) 

and  from the   form, 

i r5" r11» 
h~2~ 

.2.   2.,-k d?J dn(^V+i)-^ {c1+c2[i^
2+n2

+i)-vq2} 

*  expf-A   (§2fn2+l)l5l a - + "/2, 

derived the seme way as eq.   (4.34),  we  find 

EE0
=[-ci{y"lexP(-a

E
y) + a

E
Ei(ar7)}-c

2K
lexP(-azy) 

x[(1+vK2) - (i+K)y"1+F"2] 
,,,,,12. , i -\Y= sec  6i 
+ (1+V-6as)Vi(V)}] 

' y=i 

(4.38) 

(4.39) 
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C. Approximation of the Reduction Factor. 

The general approximate form for R is 

R  = ) B .E_ 
o L   ox u (4.40) 

01 

In most cases the I choices described in this section and the last, 
e.g. the centered approximation, are adequate approximations to £, 
giving results which are off only by a few percent. But Figure 8 
shows an example in which the centered approximation to a rectangular 
representation of a slab E entails a sizable distortion. Here we 
may retain eq. (3.35), but change the values of the v. so that can- 

cellation in E„ , of errors from portions of Z near the middle of 
ho r 

and exterior to I , with errors at the corners, in £ but exterior 
to L can occur.   This results in v. slightly smaller in absolute 

value than values stemming from eq. (3.36). The best values of v.., 

for example, can be estimated by equating the ratio of the areas of 
the (right) "triangles" with centroids A and B in the figure to the 
values of the integrand of E at these two points.  Tais condition 

gives the base of triangle A, which determines v..  This is the 

method we have used to improve the choice of I for the long side 

walls of the M113 in the next section. For identification purposes 
we call this the "reshaping approximation". 
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5. "WALLS ONLY" MODEL OF THE M113. 

In the phrase "walls only" we intend that the floor and ceiling 
surfaces also be included.  Figure 8 shows the indexing convention 
for the surfaces of the M113. To achieve the idealization implied 
by the contents of the figure we have identified the inner framing 
plates with the hull walls, ignored a variety of surface bumps and 
irregularities, and represented the sides of the vehicle as flat. 
Figure 9 is a sketch of the vehicle cross section as seen from the 
rear, together with some aspects of the idealization implied by our 
procedure. 

We choose the detector position to be 30 inches above the 
floor, or 45o9 inches above the ground, so that heff = (36 + 45.9) 
in = 6.8 ft, and K = .0158.  The detector is centered, equidistant 
from the two sides, and also more or less is centered with respect 
to front and rear, beneath the cupola opening. In Table 1 we list 
the data for each of the £., much of which partially is determined 
by choice of detector position. In Table 2 we list the computed 
values of the* E„  , the buildup factors, and the r„ .. 

-oi So1 

By a process of inspired scrutiny involving eq. (3.30) we have 
estimated crudely a 1.05 refraction correction; also, we assume 
a 10%  albedo, so that from eq. (4.40) and Table 2, 

ft = l.l'v5R « .6521 (5.1) 

P = ft"1 ■=  1.53 (5.2) 

* For £, (£_) we have computed E  for the detector position above 
6  7 L0 

(below^ the center of £fi(£ ) for simplicity.  This is almost 
exaxtiy the case for £ so the error here is small; it is greater 
for £ , but this is tolerable because the total skyshine con- 
tribution is small, anyway. 

Also we have divided £ (=£ ) into £ + £ , where £ is the 

portion of Z    above the horizontal plane containing the detector 
and £  the portion below.  For £* we have taken u. =f u_ to take 

account of the shape irregularity.  By the remark in paragraph 

1 of Section 4,  £  = i(   + E  ) where L and R refer to the left 
hl L1L  Hk 

(u = un) and right (u = u_) portions of Z.. 
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M113(APC) 
REAR CROSS SECTION 

— 15.9 
33.4 49.1 

i       t 

-42.1 0.0 27.3        41.5 

FIG. 9 M113 vehicle cross section, from the rear, showing the double wall structure. 
The dotted lines trace out the rectangular cross section for the "walls only" model, 
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zrz2 -1 L2 Z3 h h h £7 

a 0 0 -9.854° +45° -30° -90° +90° 

t 1.875 1.875 1„500 1.500 1.500 1.500 1.625 

zl 49.1 49.1 84.7 55.2 83.9 30.0 24.3 

-x1,x2 86.0 70.0,86.0 49.1 49.1 49.1 83.1 72.1 

yl -30.0 0 -15.7 -72.1 +13.8 -49.1 -49.1 

y2 
0 +24.3 +S9,4 -20.8 +3406 f49.1 f49.1 

•l'U2 2.02 L. 74,2.02 1.1516 1.1816 1.1211     

vi -.520 0 -.3539 -.2164 -.3575     

V2 0 + o420 +.2871 +.4407 -.1428     

0r®2 1.0495 .9580, 
1.0495 .5189 .5620 .4691     

♦l -.547 0 -.3618 -.218 -.3656     

"'2 0 + .433 +.2912 + .456 -„1433   

1 
Table 1.  Slab data for computing the M113 

protection factor in the "walls only" 
model.  Entries for dimensioned quantities, 
in rows 2-6, all are expressed in inches; 
entries in the last three rows, 10 - 12, 
are in radians. 
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« h E4 h h h 
.0873 .0114 .0516 .0272 .0101 .0766 .0144 

Bo 
1 

1.54r! 1.548 1.438 1.438 1.438 1.438 1.475 

1 

! £o 
.1351 .0176 .0742 .0391 .0145 .1102 .0212 

Table 2. Attenuation, buildup, and reduction factors for 
the surfaces of the "walls only" model of the 
M113. 
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From eq. (2.6), using L(6.8 ft.) = .86 we find 

S = 1.32, (5.3) 

which is considerably smaller than the average value reported in 
Reference 1, 

S = 3.41, (5.4) 

where variations of detector position did not involve deviations 
of more than 10 to 15%. 

The results of the simplified model of Section 6 support the 
hypothesis that the discrepancy between (5.3) and (5.4) is due to 
neglect of shielding effects from material present additionally to 
that which resides in the vehicle's surfaces. 
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6.  PARALLELIPIPED MODEi 
7 

The combat loaded weicht of the M113 is 24,000 pounds while 
the weight of material assumed for the calculation of Section 5 

shell    A£ I i i (6.1) 

where JA£ = 
2«72PH 0

a 2.72 x 62.4 #/ft3 - 117 #/ft3, the density 

of Aluminum, A. is the ar*  of £., and t. its thickness. The 
i i     i 

volume factor in eq. (6.1) for   the    M113 is 

I A.t. = 57.96 ft3  (M113) (6.2) 
i x  x 

so that W ,_ ,, = 9838 , which is only 41% of the combat loaded 
shell 

weight given above. In light of this, the disagreement between 
(5.3) and (5.4) is hardly unreasonable. We proceed to a simplified 
model and calculation for the M113, based on the information and 
experience gained so far. 

We idealize the vehicle by a closed shell of uniform thickness 
and (possibly heterogeneous) composition. The attenuation constant 
for the unscattered component of the radiation due to atoms of 
species k is 

ht = Vk (6-3) 

when n is the number density for atoms of species k and a the 
corresponding y-ray cross section. We define an effective thickness, 

fc.f f * W/(PMA) • (6-4> 

where W is the total weight of the fully loaded vehicle and A is 
the surface area of the shell used to model it.  Then the un- 
scattered component penetrating the wall is proportional to 

exp(-üt ff),  where 

where 

5 "(£ Vk>\« l6-5) 

" "M I fkV l6-6) 

with 

fk = Wk/W (6.7a) 

gk =(Z/A)A£ (Z/A)k' {6,7b) 
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wherein W is the weight of material of species k, Z is the number 
of electrons on the indicated atom and A the corresponding atomic 
weight. 

The composition of the M113 was not available to us, so to 
estimate \x    we have modeled the material breakdown as follows: 

Aluminum 10,000 

Fuel 2,000"" 

13/160* dummies 2,100* 

Other 9,900# 

Total 24,000* 

The'bther" entry includes the motor, hatches, gun, treads, etc., of 
which we assume about 2/3 to be iron, with specific gravity = 7.86, 
and the rest aluminum.  The results, together with the values 
assumed or computed for the f and the g , are given in Table 3. 
The result is 

so we just take 

U = ^ (6.8) 

as the attenuation constant for the shell wall, and 

t = t ._ (6.9) 
eff 

=*s its thickness. 

In the present model we have concentrated all the material 
present into the shell, disregarding effects of the actual, quite 
complicated, distribution of matter.  In the same spirit we choose 
the simplest shape to work with, a parallelepiped having a square 
vertical cross section of side L, and a height H equal to that of 
the actual vehicle. We fix L by equating the surface area of the 
square parallelepiped to that of the best rectangular/parallelepiped 
representation of the vehicle's actual shape, which we estimate 
from the Master Diagram6: 

length = 162.3 in.^ 

width =  83.0 in-\ (M113) (6.10) 

H     =  54.3 in. 

2 
This gives A = 372 ft , t „ - 4.56 in., L = 118.1 in. 

err 
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Species Sp. Grav. 
v#) fK 

Aluminum 2.7 13,400 .56 

Iron 7.86 6,500 .27 

Dummies 1.8 2,100 .09 

Fuel 1.0 2,000 .08 

1.00 

.95 

1.10 

1.23 

Table 3. Estimated material breakdown for the Ml13. 

For all the walls a = 0, so we may use eq. (4.21). We compute 
just the direct contribution R^d) to R, correcting for skyshine and 
albedo together by multiplying by 1.1 (skyshine) x 1.1 (albedo) = 
1.21; 

ft. = 1.21 R (d) 
(6.11) 

where 

R<a> =VW<Ef w«> (6.12) 

with suffixes f_ and w referring to floor and wall, with Bo^off) 
given by eq. (2.27), and with 

p(d) ±    l,T(d)T ,on Ew.  " TT
(J
1 h(o))i' (6.13) 

We place the detector on the vertical axis through the center 
of the square so all the E^ 'are equal; this also makes E  a 

w.     ^ o 
circle for the floor slab.  For the wall we assume the centered 
approximation, eqs. (3.35) and (3.36). We assume the detector to 
be at a height hf above the floor.  Collecting all the necessary 
formulas specialized to this case we have: 

P_1 = ft. = 1.21 R(d) 

(Er + 4 E
(d)) 

f     w 

VW = 1+ *292 fceff (in) 

(6.14a) 

(6.14b) 

(6.14c) 

39 

  



NOLTR 73-137 

Ef  = c(E1(A) - EX(A sec Q±)   ) 

A  = aE + K. az = Ujate£f 

H  = .002314(ft) 
-1 

(h + 15.9 in + 3 ft), 

-1 
sec 6. = (1 - w ) 

mf    = 2n_1 tan"1 %\f{l  + 2$*f)Js 

%lt  = L/(2hf) 

w        11 

1^0) = S(ar,©2 = 45°) 

J  - cE (GJ, c = .2034 + .783K, 

-       -1 
Cl = "KV1 

Vl s  "2hf/L 

6.14d) 

6.14e) 

6.14f) 

6.14g) 

6.14h) 

6.14i) 

6.14.J) 

6.14k) 

6.14-t) 

6.14m) 

6.14n) 

The sources, respectively, are eqs. (2.5) and (6.10), (6.11) 
(2.27), (4.37), (4.35) and (3.29) , (2.8) and (2.22) (with h - h + 15.9 
in. replaced by h + Ah, Ah = 3 ft ground roughness, and where 15.9 
is the height above ground of the floor slab), (4.32), (4.10) and 
(4.12), (3.11), (4.21), (3.35) and (4.22), (4.27b) and (2.25), 
(4.26), and (3.36). 
We have not included a refraction correction here as we did in 
Section 5(cf. eq. (5.1) since the magnitude of the effect»which is 
the"softening" of the unscattered attenuation at large 60, is well 
overshadowed by that arising from the irregularities of the actual 
mass distribution.  Also, the neglect of shape effects implied by 
the assumption of square vertical cross section renders such a 
consideration doubtful.  Finally, a 5% correction can be absorbed 
by modelling the vehicle so that L is a little smaller; for the 
M113, changed, slightly smaller, dimensions of the "best" rectangular 
parallepiped representation of the vehicle's actual shape involve 
estimates as reasonable as those given in (6.10).  A similar remark 
holds for the P7. 

We see from eqs. (6.14) that P and ft are fixed as functions of 
h, when t .^ and L are given, as, e.g., in (6.10) for the M113.  The 
f      err 

answers , for two choices of detector height, hf, above the floor of 
the vehicle, are 
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ft = ft(hf) = .2734 hf = 25.9 in, 

= .2544        hf = 45.9 in. 
(6.15) 

so that 

P(25.9 in) = 3.66 

P(45.9 in.) = 3.93 I (6.16) 

in) = 3.66 J 

in) = 3.93 J 

and, by eq. (2.6), S = .86 P, 

S(25.9 in.)= 3.15 1 

5(45.9 in.)= 3.38 f 
(6.17) 

From Reference 1, for positions 18 in from the (two) side walls, 
experiment gives 

S(47 

S(49 

.25 in,)= 3.59, 3.07 ) 
( (6.18a) 

.25 in.) = 3.76, 3.24 J 

which gives an idea of the experimental spread arising from the 
matter distribution. The average of these values of S is 3.42, 
suggesting 

S(48.25 in.)= 3.4 ± .3. (6.18b) 

Experiment also gives, 27 in. from the left wall, 

S(31 in.) = 3.61, (6.18c) 

a value within the indeterminacy* indicated in (6.18b). 
Comparing these values with our computed result, eqs. (6.17), we 
see that the agreement is good.  ("Too good", of course; a 15% 
albedo weakens the agreement by 5%.) 

Turning to the marine corps LVTP7, we take 

length = 293.0 in.) 

width = 103.6 in.)    (P7) (6.19) 

H = 78.0 in. 
2 

which gives A = 851 ft , t ff = 4.33 in, L = 181.6 in, and 

h = 25.9 in.: ft. = .2562, P = 3.90, S = 3.35 \ 
£ \      ' (6.20) 

h = 45.9 in. : ft = .2471, P = 4.05, S = 3.48 7 

*As distinguished from "uncertainty!" 
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We adopt for the residual radiation transmission factor (RRTF) 
the following: 

M113: RRTF = S'1  = (3.4)"1 = .29 experiment 

S"1 = (3.5)"1 = .29 theory        (6*21) 

P7:  RRTF = S"1 = (3.7)"1 = .27 theory.       (6.22) 

Accordingly we recommend the adoption of the value 

RRTF = .3 (LVTP7). (6.23) 

42 

1 



NOLTR 73-137 

7. DISUCSSION 

The RRTF for both vehicles is 0.3 despite the fact that the P7 
weighs more than twice as much as the M113. Note, however, that 
M113 P7 
t __ = 4.56 in and t ,, = 4.33 in, so the model wall thickness, 
eff eff 

which is a principal determining factor, is nearly the same for the 
two cases. This reflects the fact that the extra weight is a size 

effect, L    = 118.1 ia and IT   = 54.3 in. being somewhat less 
than the corresponding values for the P7, Lp7 = 181.6 in. and HP7 = 
78.0 in. Moreover, since the floors of both vehicles are 
15.9 in. from the ground, equal values of hf and h mutually imply 

P7   M113 
each other; and since H  > H,    proportionately more of the total 
mass of the P7 than of the M113 lies above the horizontal plane 
through the detector position. This means that much of the P7's 
added mass is positioned so that it protects only against the 
relatively ineffectual skyshine "threat" (6>TT/2) . 

43 

-Hi 



NOLTR 73-137 

8.  SUMMARY AND CONCLUDING REMARK 

We have computed the residual radiation transmission factor for 
the Marine Corps LVTP7 to be 0.3, based on a model of the mass 
distribution whose results for application to a similar vehicle, the 
army APC M113, agree with experiment. 

We have accomplished this by developing a new analytical 
approximation scheme for transmission through a rectangular 
(wall) slab. The scheme has a wide range of applications, to 
the case where the plane of the slab is not too close to the 
horizontal: specifically, |ot| not too close to COS~1K • 
The method employs the approximation that the conies determined by the 
intersection of the cones of constant 6 with -he plane of the slab 
coincide with the hyperbolic arcs of a natural elliptical coordinate 
system in the plane of I.    The coordinate system is chosen by 
requiring the conic determined by cos 9 = H , along which the source 
angular distribution maintains its peak value, to coincide with the 
corresponding hyperbolic arc. Finally, E is replaced by an approxima- 
tion, I  , more convenient for calculation: the boundaries of Z 
are segments of ellipses (sides) and hyperbolas (top and 
bottom) "parallel" to the curvillinear axes of the natural coordinate 
system for the problem. 

We remark, finally, that the use of natural coordinates should 
simplify mesh size problems encountered in programming the surface 
integrals for numerical integration, at a considerable savings in 
computer time and cost.  Small mesh sizes can be chosen for the 
v-integration, probing the rapid variation of the source function 
through the peak near cos0 =H , and large mesh sizes will suffice 
for the v-integration since the v-dependence of the integrand is 
relatively weak. 

44 



NOLTR 73-137 

REFERENCES 

1. M. J. Schumchyk, R. E. Rexroad, M. A. Schmoke, and W. C. 
Hampton, "Fallout Shielding Characteristics of Combat Vehicles 
M60 and M48A2 Tanks, M59 and M113 Armored Personnel Carriers," 
U. S. Army NDL-TR-45, Edgewood Arsenal, September 1965; 
M. A. Schmoke, R. E. Rexroad, and M. J. Schumchyk, "Evaluation 
of Internal Radiac Detector Positions for the M48A2 Tank and 
the M113 Armored Personnel Carriers," U. S. Army NDL-TR-52, 
Edgewood Arsenal, June 1966. 

2. L. V. Spencer, "Structure Shielding against Fallout Radiation 
from Nuclear Weapons," NBS Monograph 42, National Bureau of 
Standards, Gaithersburg, Maryland, June 1, 1962. 

3. "Engineering Compendium on Radiation Shielding," Vol. I, R. G. 
Jaeger, E. P. Blizard, A. B. Chilton, M. Grotenhuis, A Honig, 
Th. A. Jaeger, H. H. Eisenlohr, eds. (Article 4.3.1.2 "Buildup 
Factor," by A. B. Chilton) Springer-Verlag, New York, 1968, 
pp 210 & ff. 

4. W. Heitler, "The Quantum Theory of Radiation," 3rd ed. (Oxford, 
1954) p. 221. 

5. National Bureau of Standards Applied Mathematical Series - 55, 
"Handbook of Mathematical Functions," Milton Abramowitz and 
Irene A. Stegun, eds., Gaithersburg, Md., November, 1964, p. 1000. 

6. Master Diagram, APC M113, FMC Corporation, Ordnance Division, 
San Jose, California, Drawing No. 1045154. 

7. M. A. Schmoke (private communication). 

8. Master Diagram, LVT EX3, FMC Corporation, Ordnance Division, 
San Jose, California, Drawing No. 4168350. 

45 


